Dynamic Simulations of Inflammatory Cell Recruitment: The State Diagram for Cell Adhesion Mediated by Two Receptors
نویسندگان
چکیده
White blood cell recruitment from the bloodstream to surrounding tissues is an essential component of the immune response. Capture Of hlood-borne Ieuk'Wks onto vascular endothelium proceeds via a two-step mechanism, with each step mediated by a distinct receptor-ligand pair. Cells first transiently adhere, or "roll" (via interactions between selectins and sialyl-Lewis-x), and then firmly adhere to the vascular wall (via interactions between integrins and ICAM-1). We have reported that a eomputatiokl method called Adhesive Dynamics (AD) accurately reproduces the fine scale dynamics of selectin-mediated rolling [1]. This paper extends the use of AD simulations to model the dynamics of cell adhesion when two classes of receptors are simultaneously active: one class (selectins) with weakly adhesive properties, and the other (integrins) with strongly adhesive properties. AD simulations predict synergistic functions of the two receptors in mediating adhesion. We present this relationship in a two-receptor state diagram, a map that relates the densities and properties of adhesion molecules to various adhesive behaviors that they code, such as rolling or firm adhesion. The predictions of two-receptor adhesive dynamics are validated by the ability of the model to reproduce experimental neutrophil rolling velocities. Comments Copyright 2003 IEEE. Reprinted from Proceedings of the 29th IEEE Annual Bioengineering Conference 2003, pages 158-159. Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27351&page=5 This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it. This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/be_papers/31 Dynamic Simulations of Inflammatory Cell Recruitment: The State Diagram for Cell Adhesion Mediated by Two ,Receptors Sujata K. Bhatia and Daniel A. Hammer Department of Bioengineering and Chemical Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA white blood cell recruitment from the bloodstream to To clarify the relationship between the molecular surrounding tissues is an essential component of the immune properties of adhesive molecules and the macroscopic response. Capture Of hlood-borne Ieuk'Wks onto vascular behavior such as rolling or fum adhesion that thev mediate. reported that a eomputatiokl method called Adhesive Dynamics (AD) accurately reproduces the fine scale dynamics of selectin-mediated rolling 111. This paper extends the use of AD simulations to model the dynamics of cell adhesion when two classes of receptors are simultaneously active: one class (selectins) with weakly adhesive properties, and the other (integrins) with strongly adhesive properties. AD simulations predict synergistic functions of the two receptors in mediating adhesion. We present this relationship in a two-receptor state diagram, a map that relates the densities and properties of adhesion molecules to various adhesive behaviors that they code, such as rolling or firm adhesion. The predictions of tworeceptor adhesive dynamics are validated by the ability of the model to reproduce experimental neutrophil rolling velocities.
منابع مشابه
The state diagram for cell adhesion mediated by two receptors.
Leukocyte recruitment from the bloodstream to surrounding tissues is an essential component of the immune response. Capture of blood-borne leukocytes onto vascular endothelium proceeds via a two-step mechanism, with each step mediated by a distinct receptor-ligand pair. Cells first transiently adhere, or "roll" (via interactions between selectins and sialyl-Lewis-x), and then firmly adhere to t...
متن کاملP27: KCNK2 and Adhesion Molecules in an in-Vitro Blood Brain Barrier Model
Two-pore domain potassium channels, like KCNK2, are known to play an important role in inflammatory diseases such as multiple sclerosis (MS). Upregulation of cellular adhesion molecules in mouse brain microvascular endothelial cells (MBMECs) of Kcnk2-/- mice resulted in elevated leukocyte trafficking into the central nervous system under inflammatory conditions. The current project aims to gain...
متن کاملRab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملI-19: The Selective Vitamin D Receptor Agonist Elocalcitol Reduces Development of Endometriosis and Formation of Peritoneal Adhesion in A Mouse Model
Background: Endometriosis is a chronic disorder characterized by the presence of endometrial tissue outside the uterus. Endometrial cells from retrograde menstruation implant on peritoneal surfaces and elicit an inflammatory response, associated with angiogenesis, fibrosis, neuronal infiltration, and anatomical distortion. Affecting an estimated 176 million women worldwide, the condition is sti...
متن کاملThe state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion.
Leukocyte adhesion under flow in the microvasculature is mediated by binding between cell surface receptors and complementary ligands expressed on the surface of the endothelium. Leukocytes adhere to endothelium in a two-step mechanism: rolling (primarily mediated by selectins) followed by firm adhesion (primarily mediated by integrins). Using a computational method called "Adhesive Dynamics," ...
متن کامل